DNA, Cell Wall and General Oxidative Damage Underlie the Tellurite/Cefotaxime Synergistic Effect in Escherichia coli

نویسندگان

  • Roberto C. Molina-Quiroz
  • David E. Loyola
  • Claudia M. Muñoz-Villagrán
  • Raquel Quatrini
  • Claudio C. Vásquez
  • José M. Pérez-Donoso
چکیده

The constant emergence of antibiotic multi-resistant pathogens is a concern worldwide. An alternative for bacterial treatment using nM concentrations of tellurite was recently proposed to boost antibiotic-toxicity and a synergistic effect of tellurite/cefotaxime (CTX) was described. In this work, the molecular mechanism underlying this phenomenon is proposed. Global changes of the transcriptional profile of Escherichia coli exposed to tellurite/CTX were determined by DNA microarrays. Induction of a number of stress regulators (as SoxS), genes related to oxidative damage and membrane transporters was observed. Accordingly, increased tellurite adsorption/uptake and oxidative injuries to proteins and DNA were determined in cells exposed to the mixture of toxicants, suggesting that the tellurite-mediated CTX-potentiating effect is dependent, at least in part, on oxidative stress. Thus, the synergistic tellurite-mediated CTX-potentiating effect depends on increased tellurite uptake/adsorption which results in damage to proteins, DNA and probably other macromolecules. Our findings represent a contribution to the current knowledge of bacterial physiology under antibiotic stress and can be of great interest in the development of new antibiotic-potentiating strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing the Antibiotic Antibacterial Effect by Sub Lethal Tellurite Concentrations: Tellurite and Cefotaxime Act Synergistically in Escherichia coli

The emergence of antibiotic-resistant pathogenic bacteria during the last decades has become a public health concern worldwide. Aiming to explore new alternatives to treat antibiotic-resistant bacteria and given that the tellurium oxyanion tellurite is highly toxic for most microorganisms, we evaluated the ability of sub lethal tellurite concentrations to strengthen the effect of several antibi...

متن کامل

AFM Probing the Mechanism of Synergistic Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) with Cefotaxime against Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli

BACKGROUND Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae poses serious challenges to clinicians because of its resistance to many classes of antibiotics. METHODS AND FINDINGS The mechanism of synergistic activity of a combination of (-)-epigallocatechin-3-gallate (EGCG) and β-lactam antibiotics cefotaxime was studied on Extended-spectrum β-lactamase producing Escherichia c...

متن کامل

Tellurite enters Escherichia coli mainly through the PitA phosphate transporter

Several transporters suspected to be involved in tellurite uptake in Escherichia coli were analyzed. Results showed that the PitA phosphate transporter was related to tellurite uptake. Escherichia coli ΔpitA was approximately four-fold more tolerant to tellurite, and cell viability remained almost unchanged during prolonged exposure to the toxicant as compared with wild type or ΔpitB cells. Not...

متن کامل

Tellurite-exposed Escherichia Coli Exhibits Increased Intracellular Α-ketogluta‐ Rate Tellurite-exposed Escherichia Coli Exhibits Increased Intracellular Α- Ketoglutarate 2 3

22 23 The tellurium oxyanion tellurite is toxic to most organisms because of its 24 ability to generate oxidative stress. However, the detailed mechanism(s) how this 25 toxicant interferes with cellular processes have yet to be fully understood. As part 26 of our effort to decipher the molecular interactions of tellurite with living systems, 27 we have evaluated the global metabolism of α-ketog...

متن کامل

The Escherichia coli BtuE Protein Functions as a Resistance Determinant against Reactive Oxygen Species

This work shows that the recently described Escherichia coli BtuE peroxidase protects the bacterium against oxidative stress that is generated by tellurite and by other reactive oxygen species elicitors (ROS). Cells lacking btuE (ΔbtuE) displayed higher sensitivity to K(2)TeO(3) and other oxidative stress-generating agents than did the isogenic, parental, wild-type strain. They also exhibited i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013